
Image analysis and Pattern Recognition

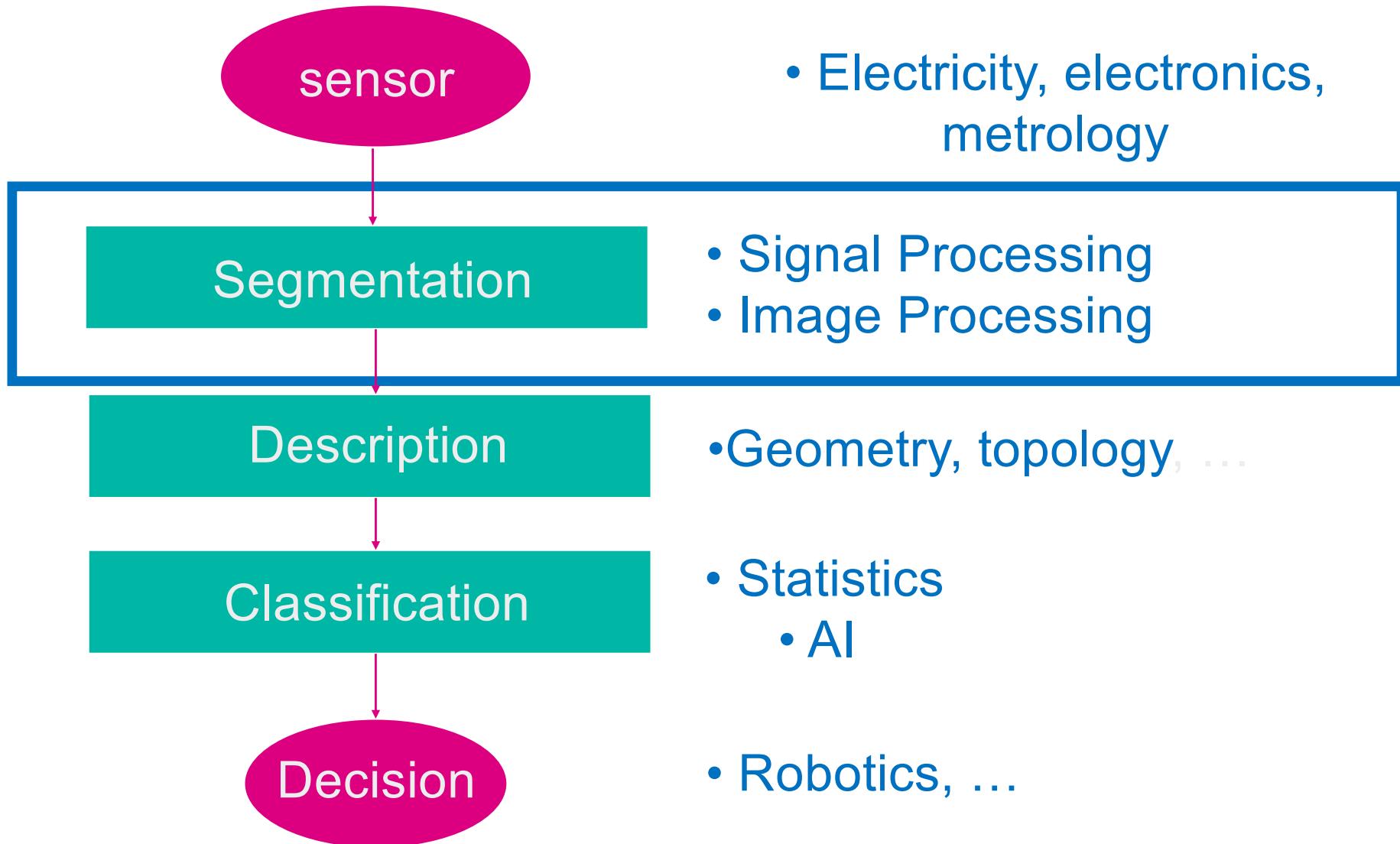
Lecture 2 : image segmentation

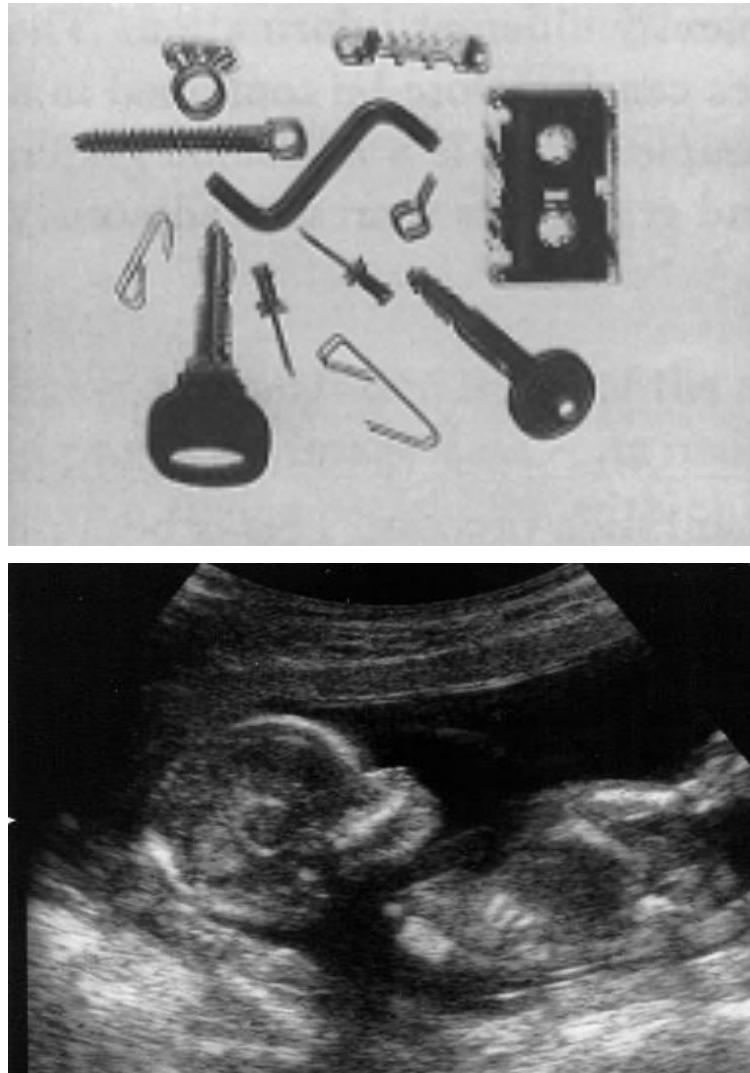
Prof. Jean-Philippe THIRAN

JP.Thiran@epfl.ch

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

EPFL





- In image analysis, we are interested in objects present in the images.
- Definition: **object**: part of an image that is semantically coherent
- In practice: often
 - Connex
 - Coherent color
 - Surrounded by sharp contours
- But also
 - Coherent Texture
 - Prior knowledge

- Definition : **Segmentation**: partition of an image in a finite number of regions R_1, \dots, R_s such that

$$R = \bigcup_{i=1}^s R_i, \quad R_i \cap R_j = \emptyset, \quad i \neq j$$

- Segmentation methods aim at defining regions that correspond to the object in the image
 - **Region-based** segmentation methods
 - **Contour-based** segmentation methods

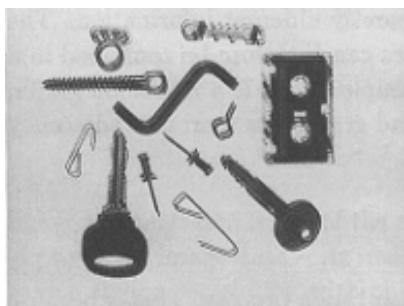
- Separation of the image into regions by setting one or several **thresholds** on the gray levels:

$$g(i, j) = \begin{cases} 1 & \text{si } f(i, j) \geq T \\ 0 & \text{si } f(i, j) < T \end{cases}$$

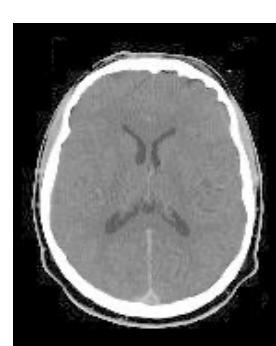
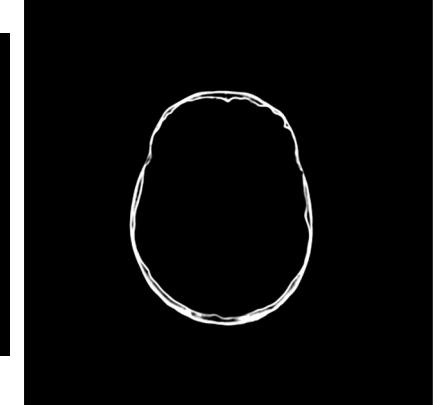
or

$$g(i, j) = \begin{cases} 1 & \text{si } f(i, j) \in D \\ 0 & \text{si } f(i, j) \notin D \end{cases}$$

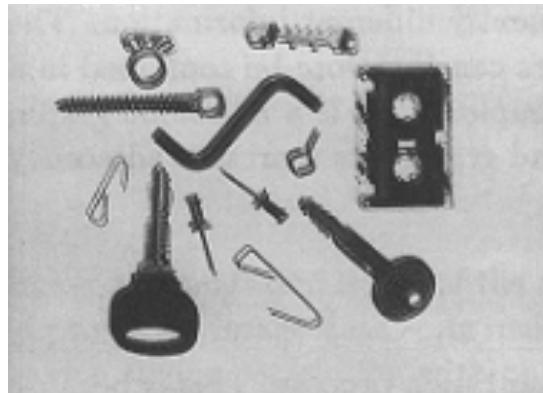
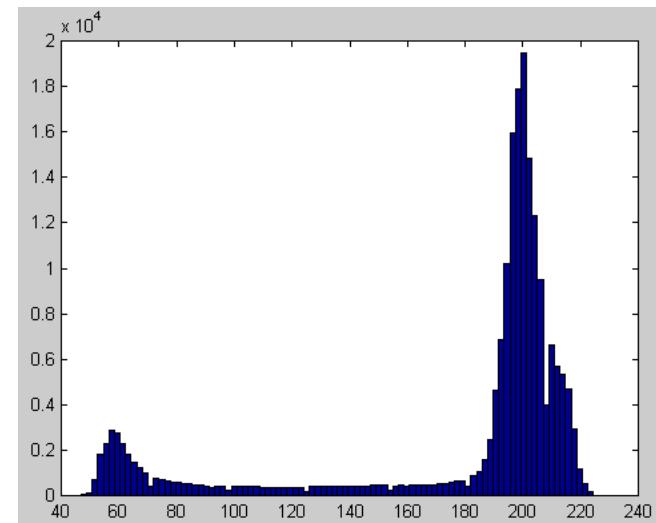
- The problem is how to find the **optimal threshold(s)**



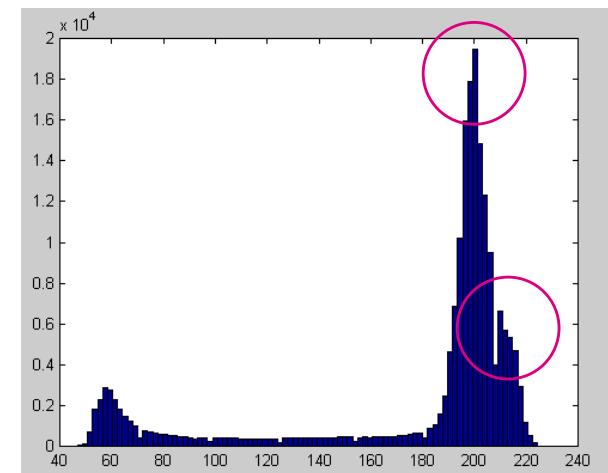
- Threshold detection methods:
 - Sometime we can know the value **a priori**
 - *Example : medical imaging (CT scan)*
 - If one knows **some properties** of the object to be segmented, one can use them to set the threshold:
 - *Example : size of the object*
 - *One can then define the threshold such that the object has the correct property*
 - Otherwise, the **histogram** can be used to set the threshold.



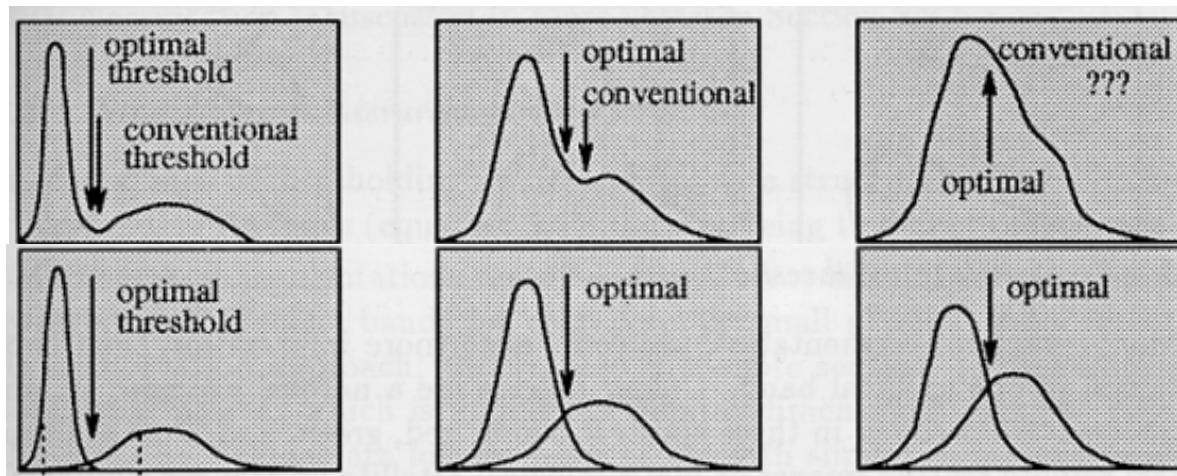
- Definition of the threshold based on the image histogram
 - Often histograms are bimodal
 - *E.g. when we have uniform objects on a uniform background (like back-lightning)*



- Definition of the threshold based on the image histogram
 - Choice of the threshold that **minimizes the segmentation error**
 - Intuitively one could choose the threshold as the **minimum** between two picks in the histogram
 - “**Mode**” method:
 - *Identify the two main maxima*
 - *Take the minimum in between*
 - *Often, we have to avoid to consider two local maxima that belong to the same mode*
 - Improve the « **peak-to-valley** » ratio
 - *Eliminate high gradient pixels*
 - *Or consider only high gradient pixels*



- Threshold definition based on the histogram: **optimal thresholding**
 - **Minimizes the probability of wrong classification**
 - Requires knowledge on the gray level distributions
 - *Often Gaussian, because of the noise*
 - *Not always: Reighley*
 - By identifying the gray level distribution of each class, one can find the **optimal threshold**
 - This optimal threshold is not (necessarily) the minimum of the histogram



- Threshold definition based on the histogram: **optimal thresholding**
 - If one knows regions that are obviously in the background, we can easily estimate its distribution
 - Otherwise, we can define a model (e.g. Gaussian) and fit curves to the histogram. Example 2 Gaussians

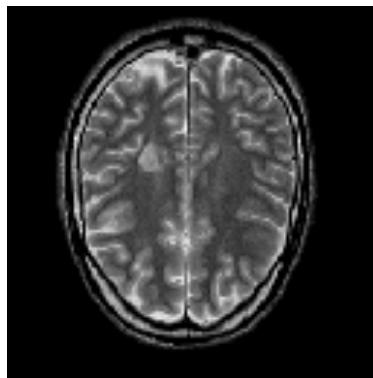
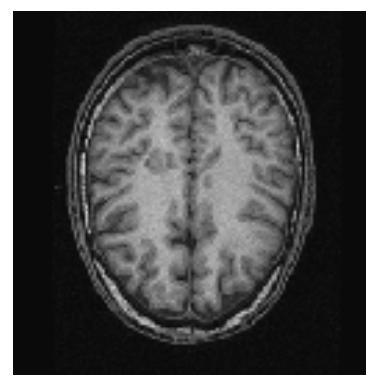
$$d_b(l) = A_b e^{-\frac{(l-c_b)^2}{2\sigma_b^2}} \quad d_o(l) = A_o e^{-\frac{(l-c_o)^2}{2\sigma_o^2}}$$

- variables : $A_b, c_b, \sigma_b, A_o, c_o, \sigma_o$
- Function to optimize : e.g. minimize the means squared difference:

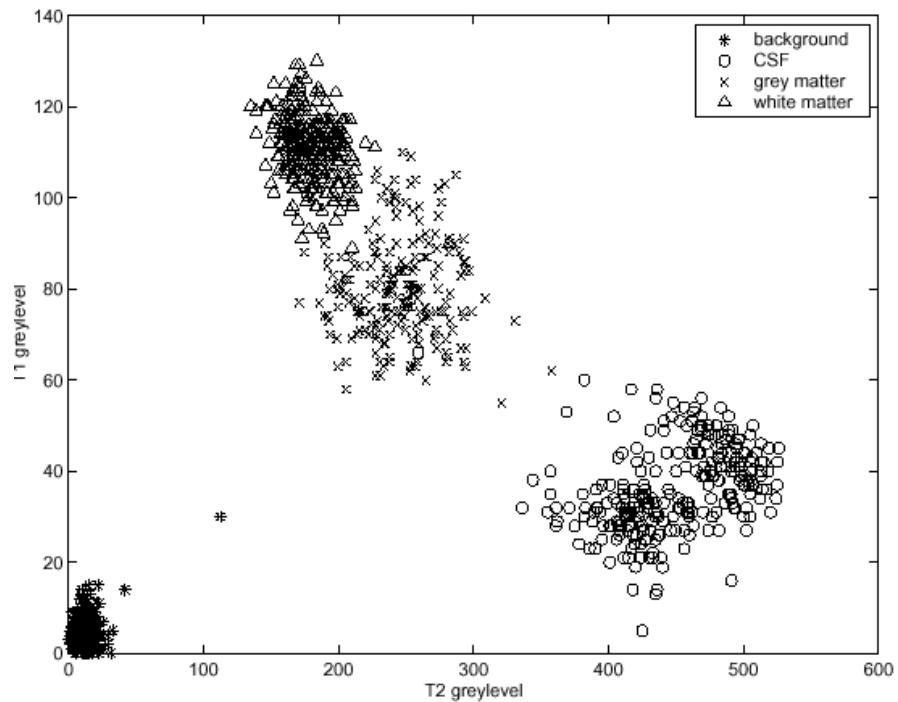
$$\varepsilon = \frac{1}{l_{\max} + 1} \sum_{l=0}^{l_{\max}} [h(l) - (d_b(l) + d_o(l))]^2$$

- Any optimization method can be used here : Expectation-Maximization (EM), simplex, Newton, ...

- **Thresholding:** partition in two regions in a 1D space
- **Multispectral thresholding:** idem, but in a n-D feature space



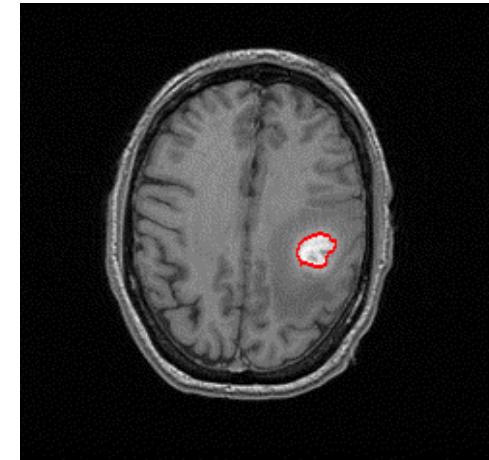
- **Classification:**
 - Chapter 3



- Segmentation by thresholding is very simple and works very well, but in a limited number of cases.
- Additionally, it does not define objects, but only separates background from foreground. The foreground does not necessarily define the objects (several clusters, not connex, ...)
- This is what region growing methods aim at solving

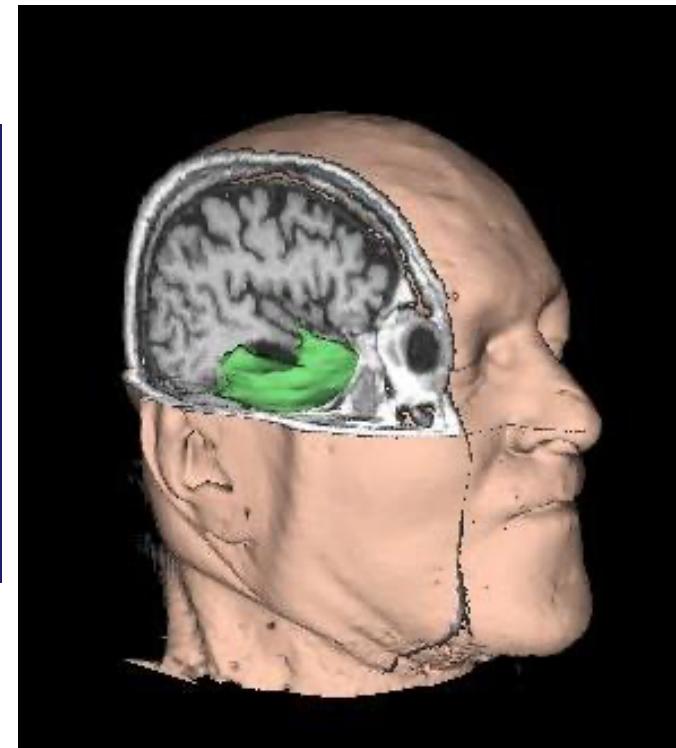
- Principe of region growing:
 - Let us fix a starting point (**seed**) in the desired region
 - Let us also define the **homogeneity criterion** used to define the region
 - *e.g. $intensity > threshold$*
 - By a **recursive procedure**, (i.e. neighbor to neighbor), let us include in the region all the pixels that are neighbors of the current pixel and that satisfy the homogeneity criterion
 - *By this the region will grow until it contains all the points connected to the seed point*
 - *We obtain a connex region*

- Notice that the **homogeneity criterion** can be quite sophisticated :
 - examples :
 - *Intensity varies slowly (intensity difference between two neighbors lower than a threshold)*
 - *The local variance is lower than a threshold (homogeneous texture)*
 - ...
 - Examples of applications:
 - *semi-automatic segmentation of a tumor*
 - *Brain segmentation in MR images*
 - *Definition of the external contours of an object on a dark background*



- Object labeling:

- Application example



- **Region Merging:**
 - One considers each pixel as a region
 - *But they do not all respect the homogeneity criterion*
 - One fuses adjacent regions if the homogeneity criterion of the union is respected
 - But the result depends on the order of the fusion process
 - One can also group blocks of 2x2, 4x4 or 8x8 pixels
 - The result is often a very rough segmentation

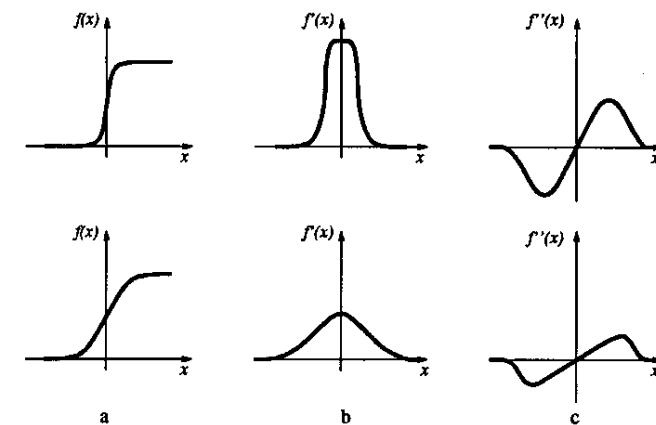
- **Region splitting**

- This is the dual approach
- One starts with the entire image
- The homogeneity criterion is probably not met
 - One divides the image, for instance in 4 parts
- This is repeated recursively until we reach small regions that can not be separated because they are homogeneous enough
- The result is often a over-segmentation

- **Split and Merge**

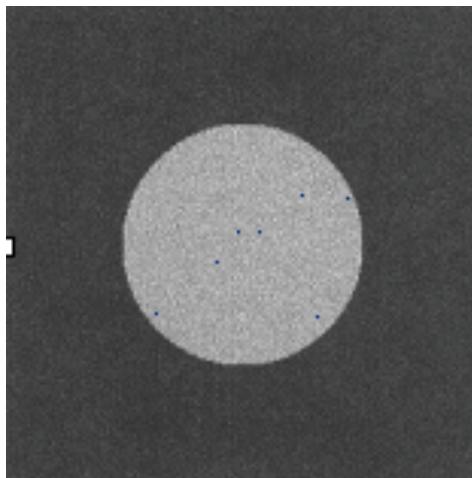
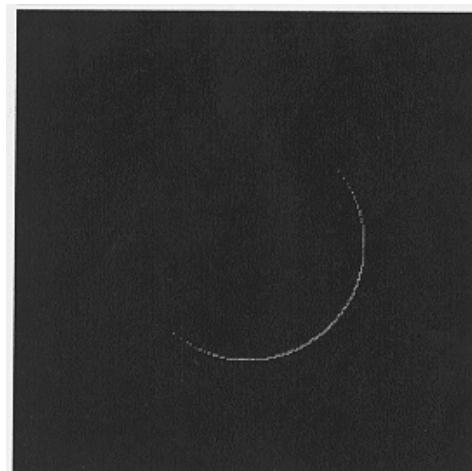
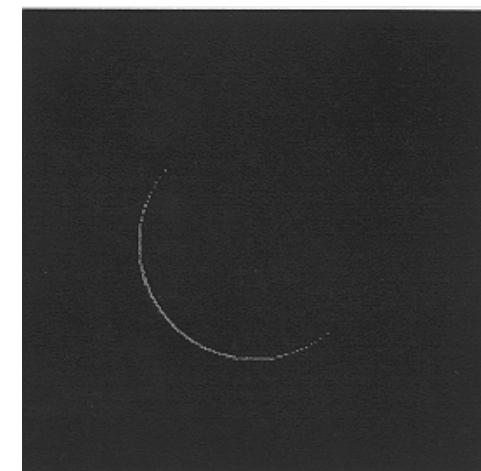
- One starts by splitting the image into (too many) small homogeneous regions
 - *Over-segmentation*
- One regroups them by merging

- The other way to define a region is to search for sharp edges: contour-based methods. An edge is
 - A sharp transition of intensity in an image
 - i.e. where the intensity profile is like a step function
 - i.e. where the **1st derivative** has a maximum
 - i.e. where the second derivative crosses zero (**zero-crossing**).
- In the history there has been a lot of methods to detect the maxima of the 1st derivative
 - High-pass filter: convolution with various filters
 - Often direction



- Edge detection: maximum of the 1st derivative
 - Robert Operator:

$$h_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ et } h_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$



Edge detection: maximum of the 1st derivative

– Prewitt

$$h_1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

$$h_3 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

...

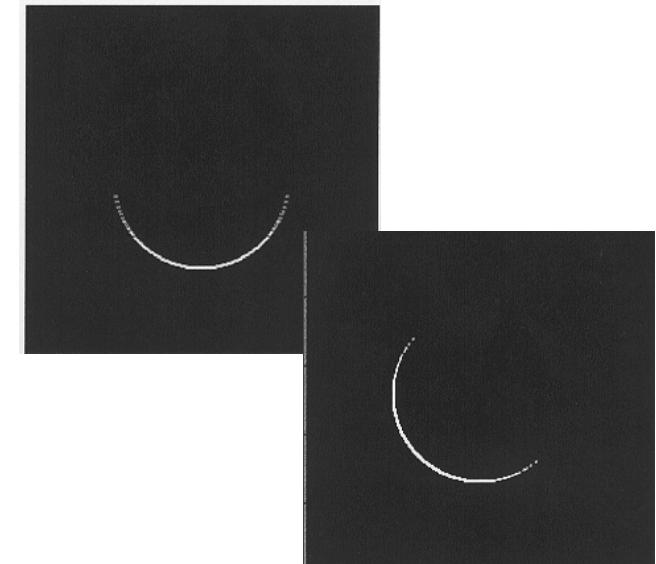
– Sobel

$$h_1 = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

$$h_3 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

...



- Edge detection : zero-crossing of the 2nd derivative
 - Marr-Hildreth : *Laplacian of Gaussian*
 - principle :
 - *Noise will introduce false detections*
 - *Let us filter the image to remove the noise and undesired details: Gaussian filter*
 - *Let us calculate the 2nd derivative of the filtered image (Laplacian operator)*
 - *Zero-crossing points of this filtered 2nd derivative are edge points*

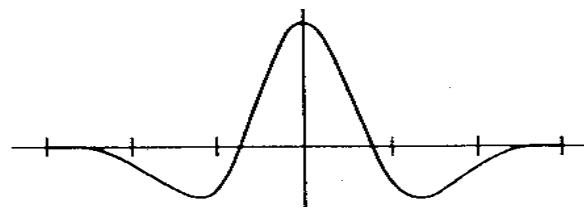
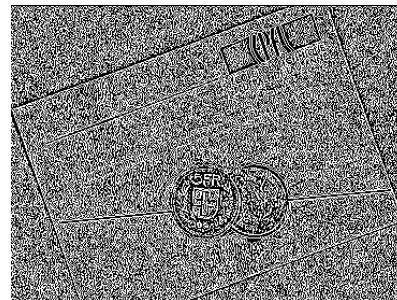
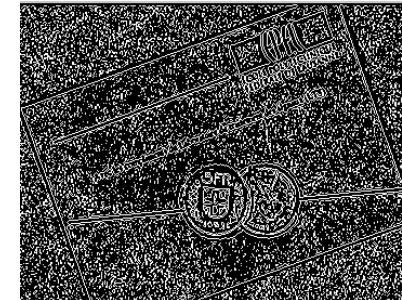
$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

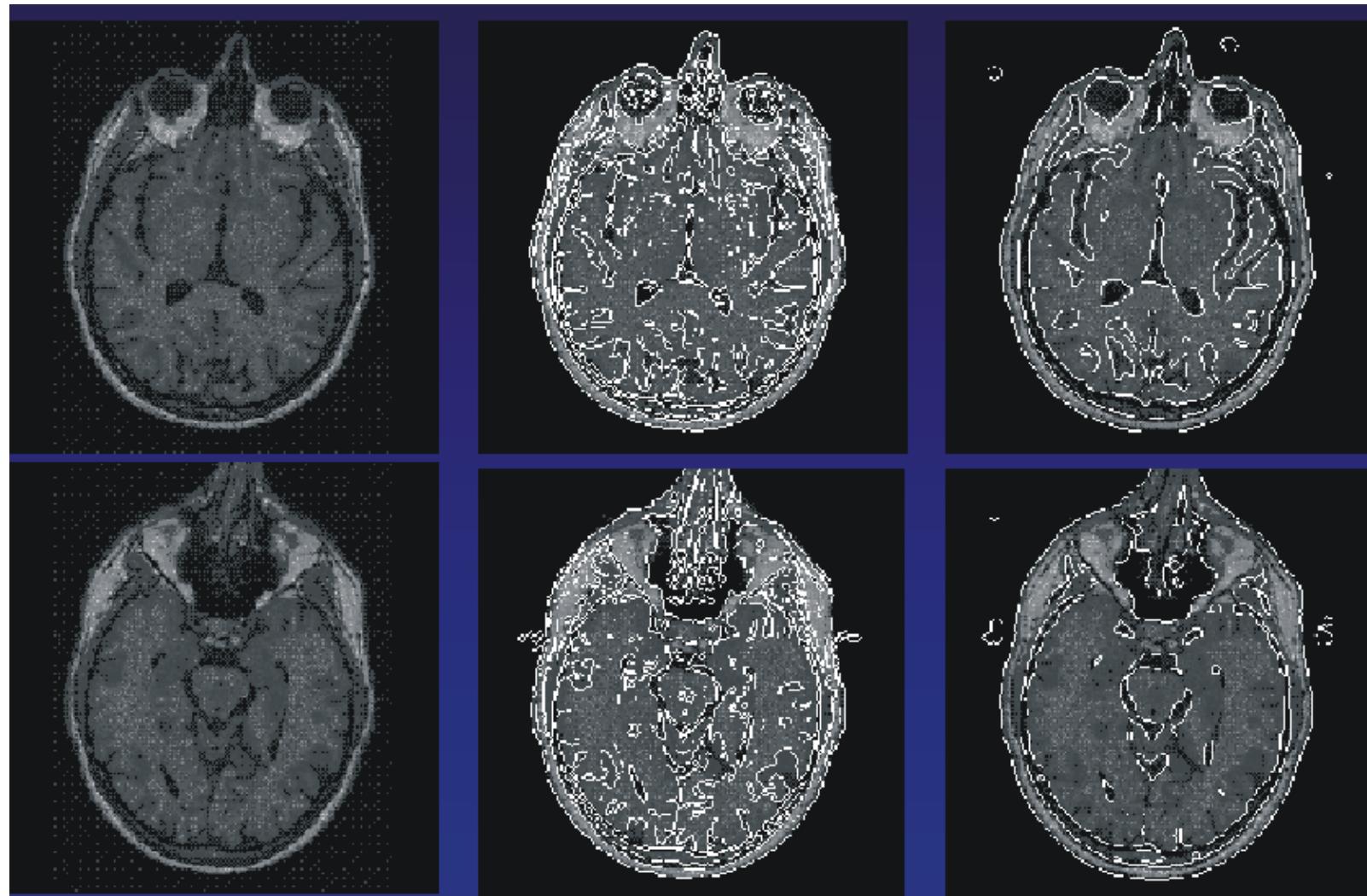
$$\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

- Trick : exploit the property of convolution:

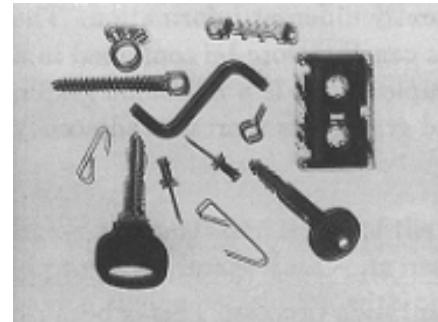
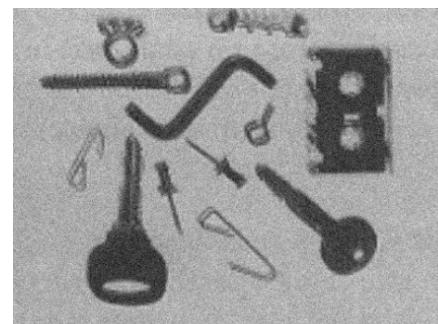
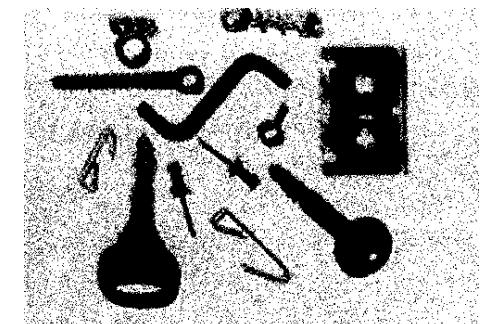
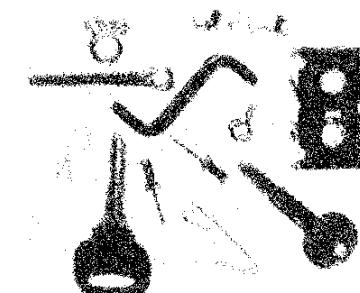
$$\nabla^2(G(x, y) \ast \ast f(x, y)) = (\nabla^2 G(x, y)) \ast \ast f(x, y)$$

- Thus, it means that we just have to convolve the image by the second derivative of a Gaussian « Laplacian of Gaussian », (LoG) and find the zero crossing of the resulting image





- If the image is not too noisy, no problem
- But most often, noise creates many problems after segmentation:
 - Irregular borders
 - Holes inside
- Solution:
 - Fill the holes
 - Smooth the borders



- Very complete and coherent theory
 - Set of operators in image analysis based on shapes
 - Uses the vocabulary of set theory
- Principle:
 - Compare the objects present in an image with a reference object, of given size and shape, called structuring element
- Basic operators:
 - Dilation, erosion, opening and closing
- Origins: Jean Serra, CMM, École des Mines, Paris
 - *Image Analysis and Mathematical Morphology, London, Academic Press, 1982.*
 - R. Haralick, S. Sternberg et X Zhuang, *Image Analysis using Mathematical Morphology, IEEE PAMI 9(4), 1987.*

- Framework : discrete plan E
- Addition:

$$\begin{array}{cccc} \circ & \bullet & \circ & \circ \\ \circ & \bullet & \circ & \circ \\ \circ & \bullet & \circ & \circ \\ \bullet & \circ & \circ & \circ \end{array} \quad \begin{array}{cccc} \circ & \circ & \bullet & \circ \\ \circ & \circ & \bullet & \circ \\ \circ & \circ & \bullet & \circ \\ \circ & \bullet & \circ & \circ \end{array}$$

X $X + (0,1)$

- Translation:

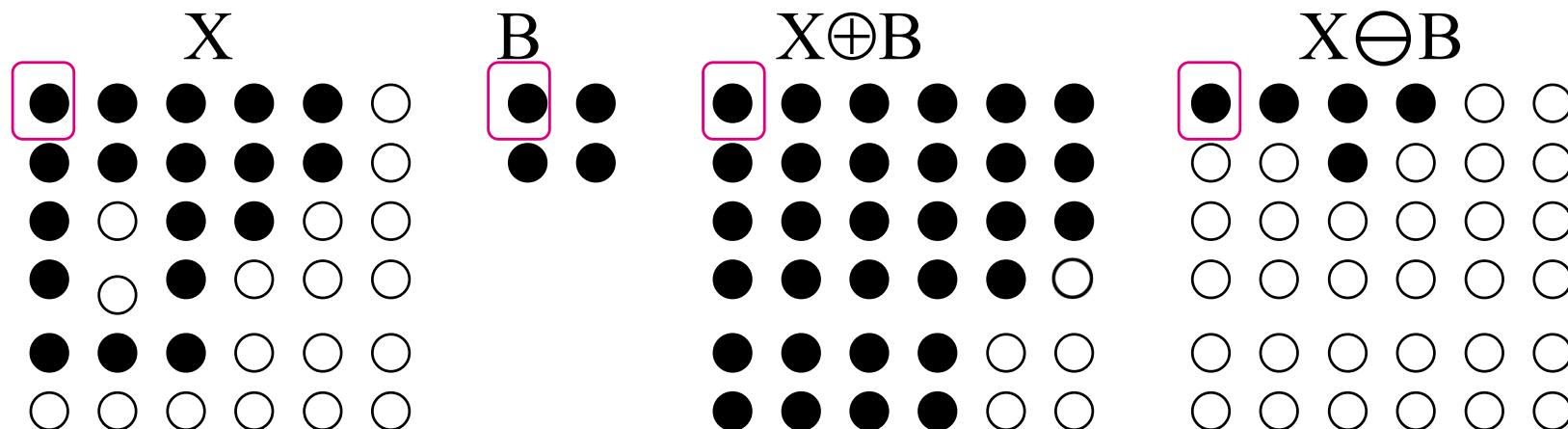
$$(A)_x = \{ c \in E \quad \text{t.q.} \quad c = a + x, \forall a \in A \}$$

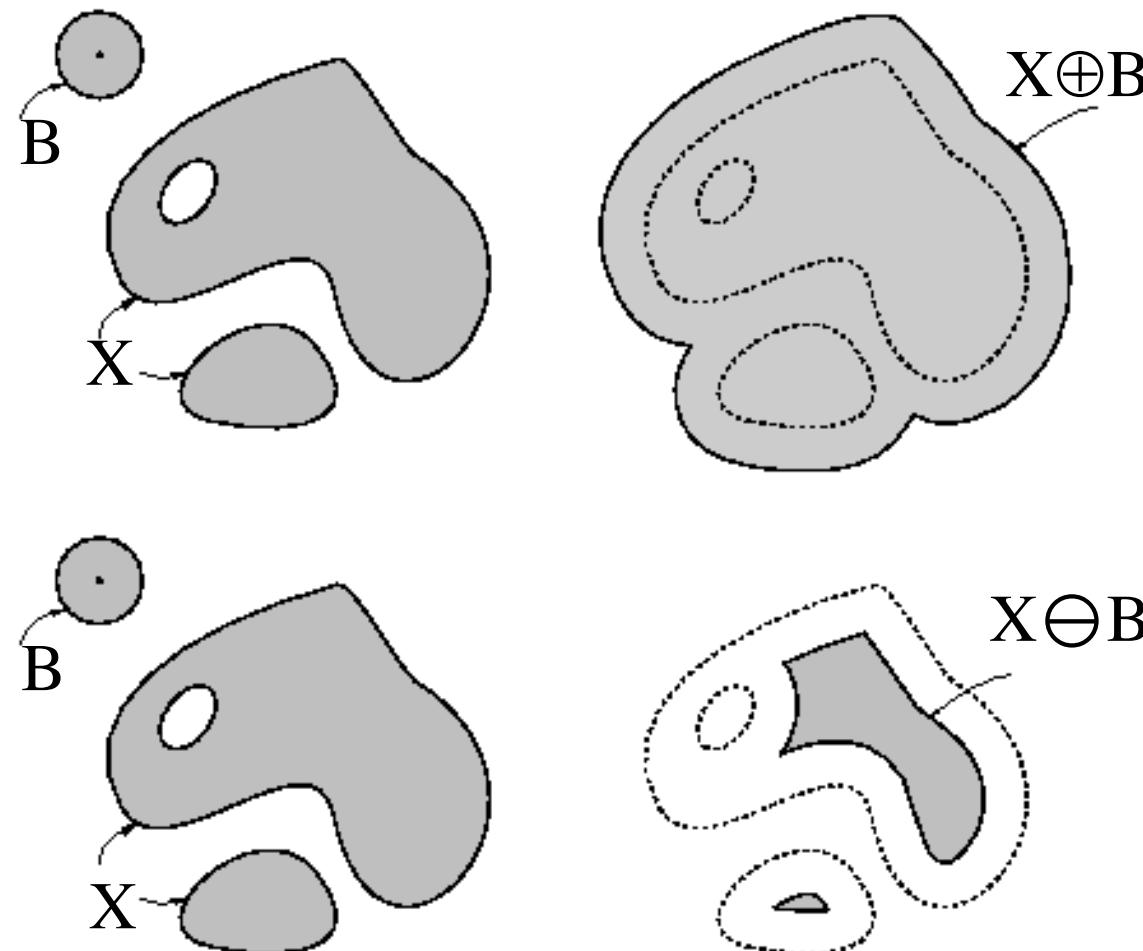
• **Dilation :**

$$\begin{aligned}
 X \oplus B &= \{c \in E \text{ t.q. } c = a + b \text{ avec } a \in X, b \in B\} \\
 &= \bigcup_{b \in B} (X)_b
 \end{aligned}$$

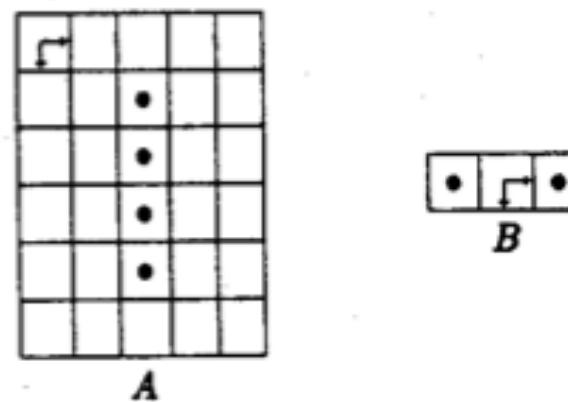
• **Erosion :**

$$\begin{aligned}
 X \ominus B &= \{c \in E \text{ t.q. } \forall b \in B, c + b \in X\} \\
 &= \bigcap_{b \in B} (X)_{-b}
 \end{aligned}$$

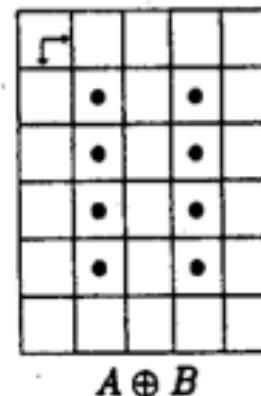




- extensivity :
 - if $0 \in B$, $A \subseteq A \oplus B$



- increasing:
 - $A \subseteq B \Rightarrow A \oplus C \subseteq B \oplus C$
 - $(A \cup B) \oplus C = (A \oplus C) \cup (B \oplus C)$
 - $(A \cap B) \oplus C \subseteq (A \oplus C) \cap (B \oplus C)$



- $A \ominus B = \{x \in E \mid (B)_x \subseteq A\}$

- Anti-extensivity :

- si $0 \in B$, $A \ominus B \subseteq A$

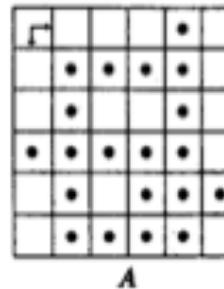
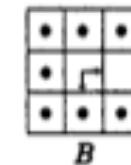
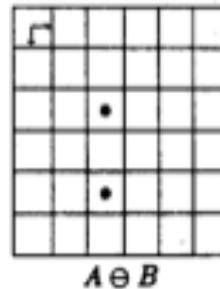
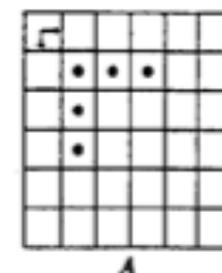
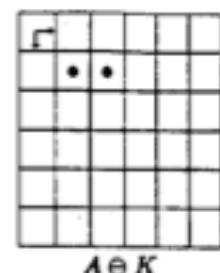
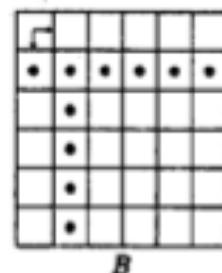
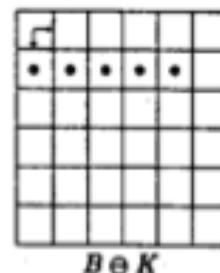
- Invariance by translation

$$(A)_x \ominus B = (A \ominus B)_x$$

$$A \ominus (B)_x = (A \ominus B)_{-x}$$

- increasing :

$$A \subseteq B \Rightarrow A \ominus K \subseteq B \ominus K$$



- $A \subseteq B \Rightarrow D \ominus A \subseteq D \ominus B$
- Definitions :
 - Complement of A : $A^c = \{x \in E \mid x \notin A\}$
 - Reflection of B : $\breve{B} = \{x \text{ t.q. } -x \in B\}$
- Duality erosion-dilation: $(A \ominus B)^c = A^c \oplus \breve{B}$
- $A \ominus (B \oplus C) = (A \ominus B) \ominus C$
- Invariance by rotation if B is a circle

- **Opening:**

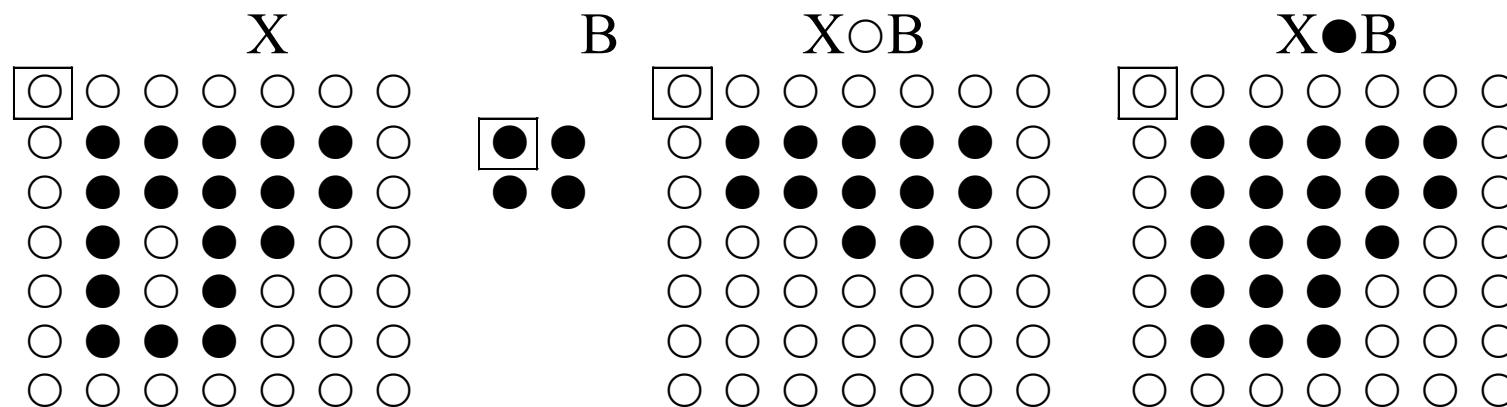
$$X \circ B = (X \ominus B) \oplus B$$

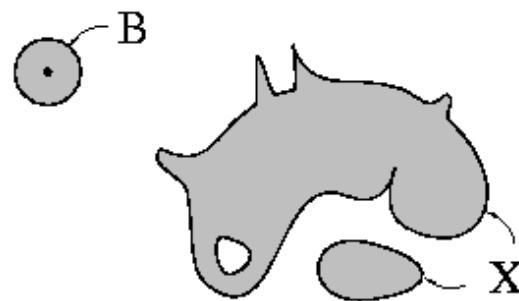
$$= \bigcup_{\{x \text{ t.q. } B_x \subseteq X\}} B_x$$

- **Closing:**

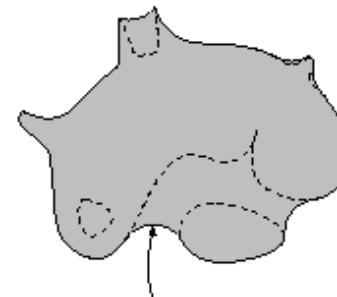
$$X \bullet B = (X \oplus B) \ominus B$$

$$= \bigcap_{\{\text{x t.q. } \check{B}_x \cap X \neq \emptyset\}} \check{B}_x^c$$





Ouvert de X



Fermé de X

- Properties:

- duality : $X \circ B = (X^c \bullet \bar{B})^c$
- extensivity :

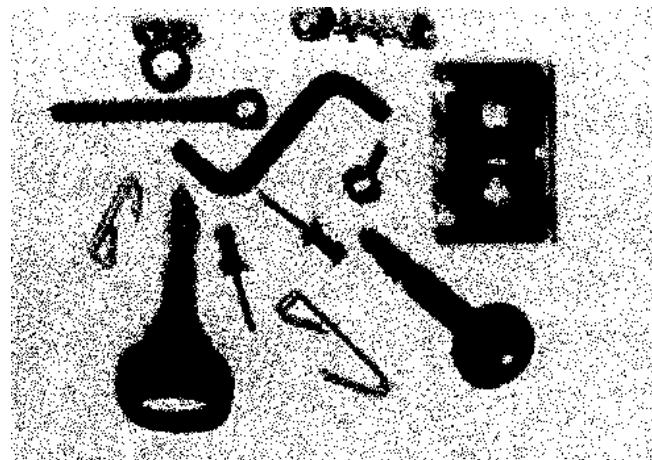
$$X \circ B \subseteq X \text{ et } X \subseteq X \bullet B$$

- idempotence :

$$(X \circ B) \circ B = X \circ B$$

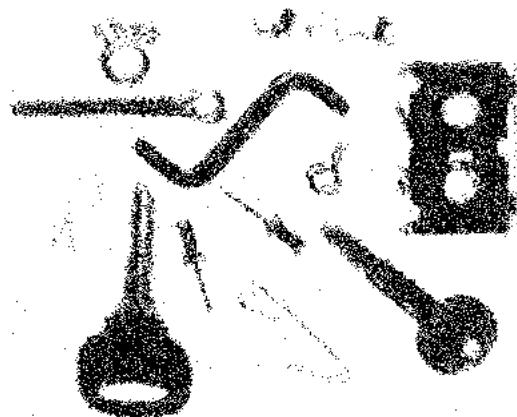
$$(X \bullet B) \bullet B = X \bullet B$$

- Principe : comparison with a **structuring element**
- Erosion & dilation: change the size of the objects
- Opening & closing: fill the holes
 - Inside the objects (closing)
 - External to the objects (opening)
- Use:
 - Post-processing after segmentation
 - cfr. examples



Original

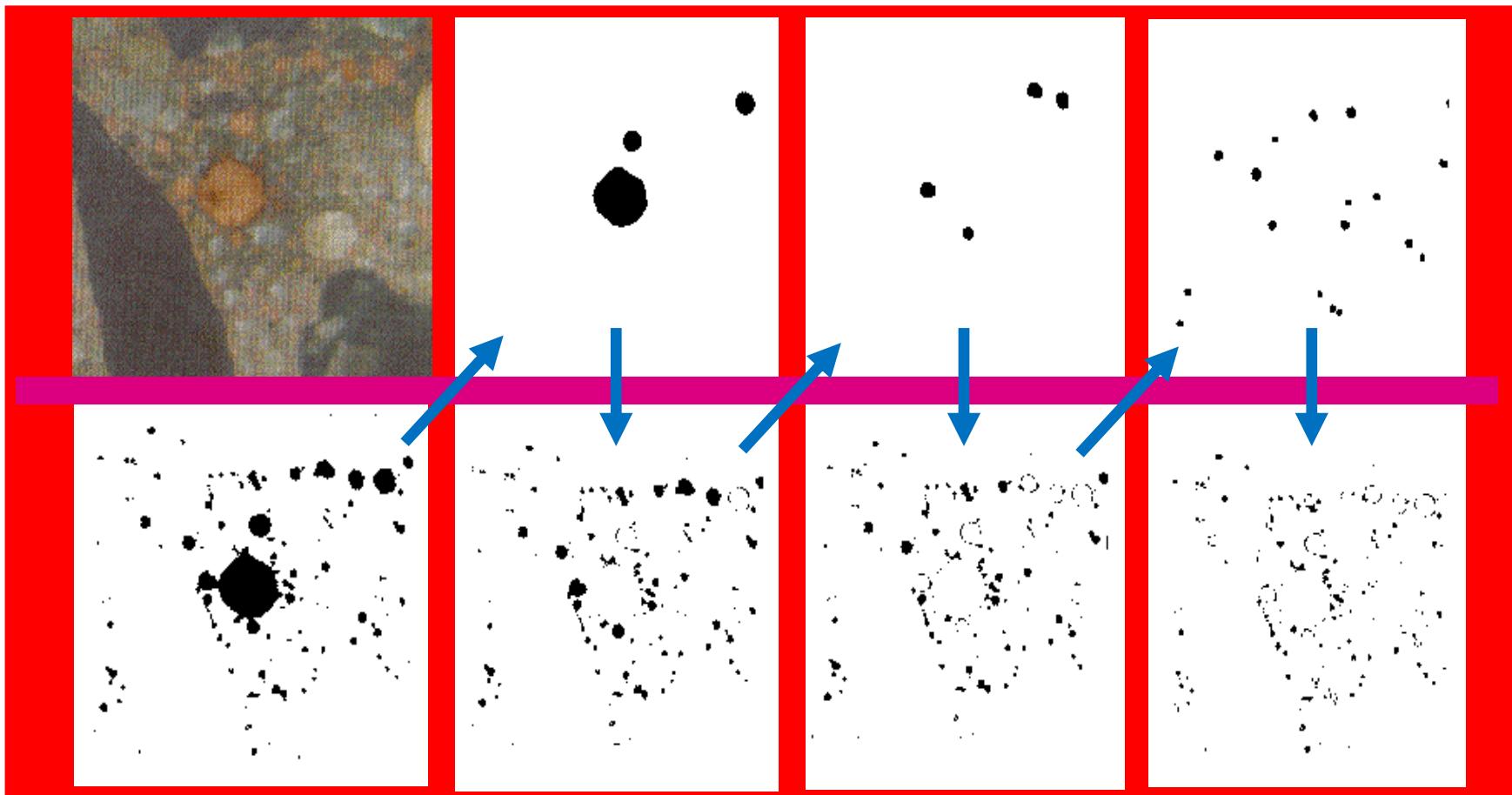
Opened



Original

Closed

- Granulometry in Concrete



- Framework: functions $f : E \rightarrow C : x \rightarrow f(x)$
- Supremum (\vee) and infimum (\wedge)
 - $(f \vee g)(x) = \max(f(x), g(x))$
 - $(f \wedge g)(x) = \min(f(x), g(x))$
- Ordering relationship :
 - $f \leq g \Leftrightarrow f(x) \leq g(x) \quad \forall x \in E$
- Translation: $f_b = f(x-b)$
- Correspondence :

Binaire	Niveaux de gris
\cup, \cap	\vee, \wedge
\subseteq, \supseteq	\leq, \geq

- Definitions :

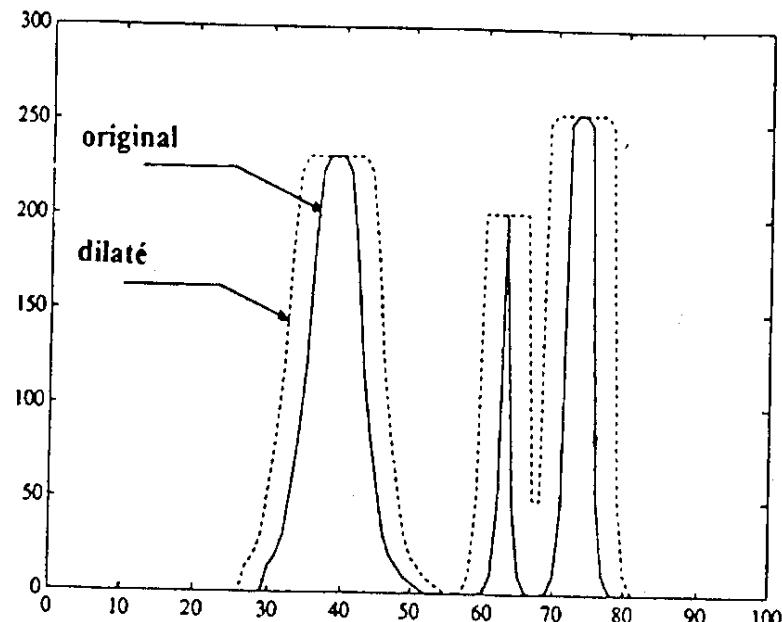
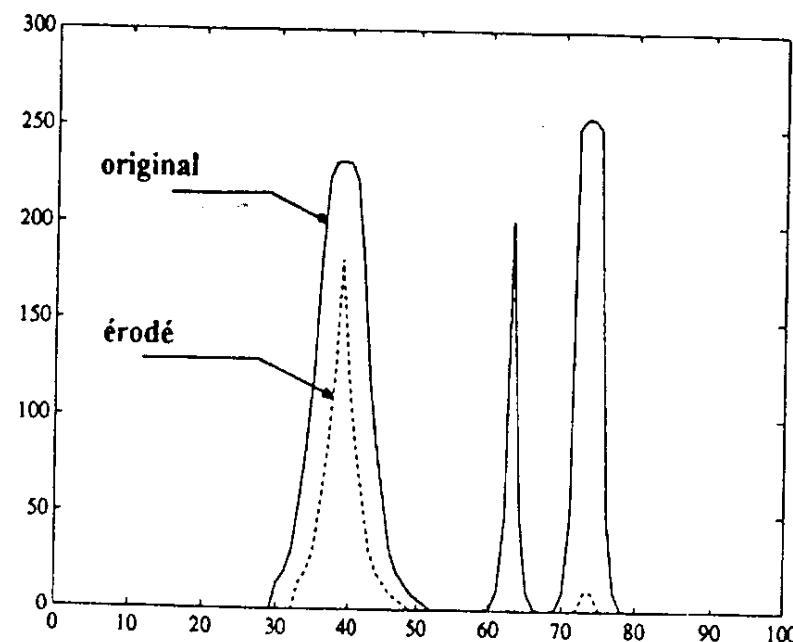
$$(f \oplus k)(x) = \bigvee_{z \in K} f_z(x) + k(x)$$

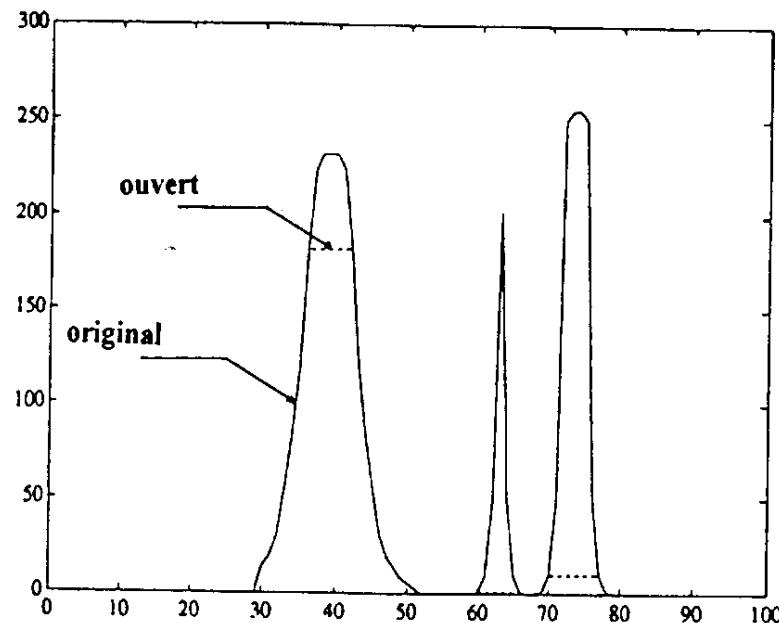
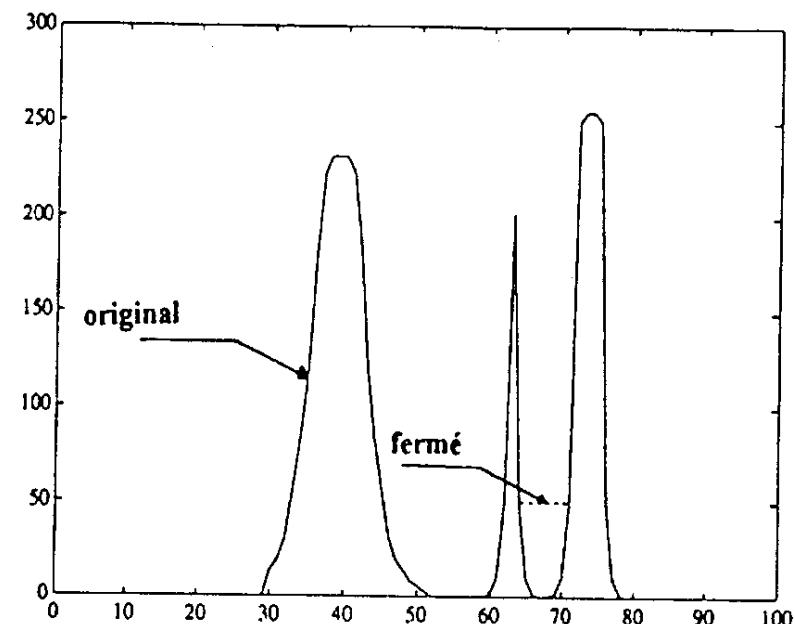
$$(f \ominus k)(x) = \bigwedge_{z \in K} f_{-z}(x) - k(x)$$

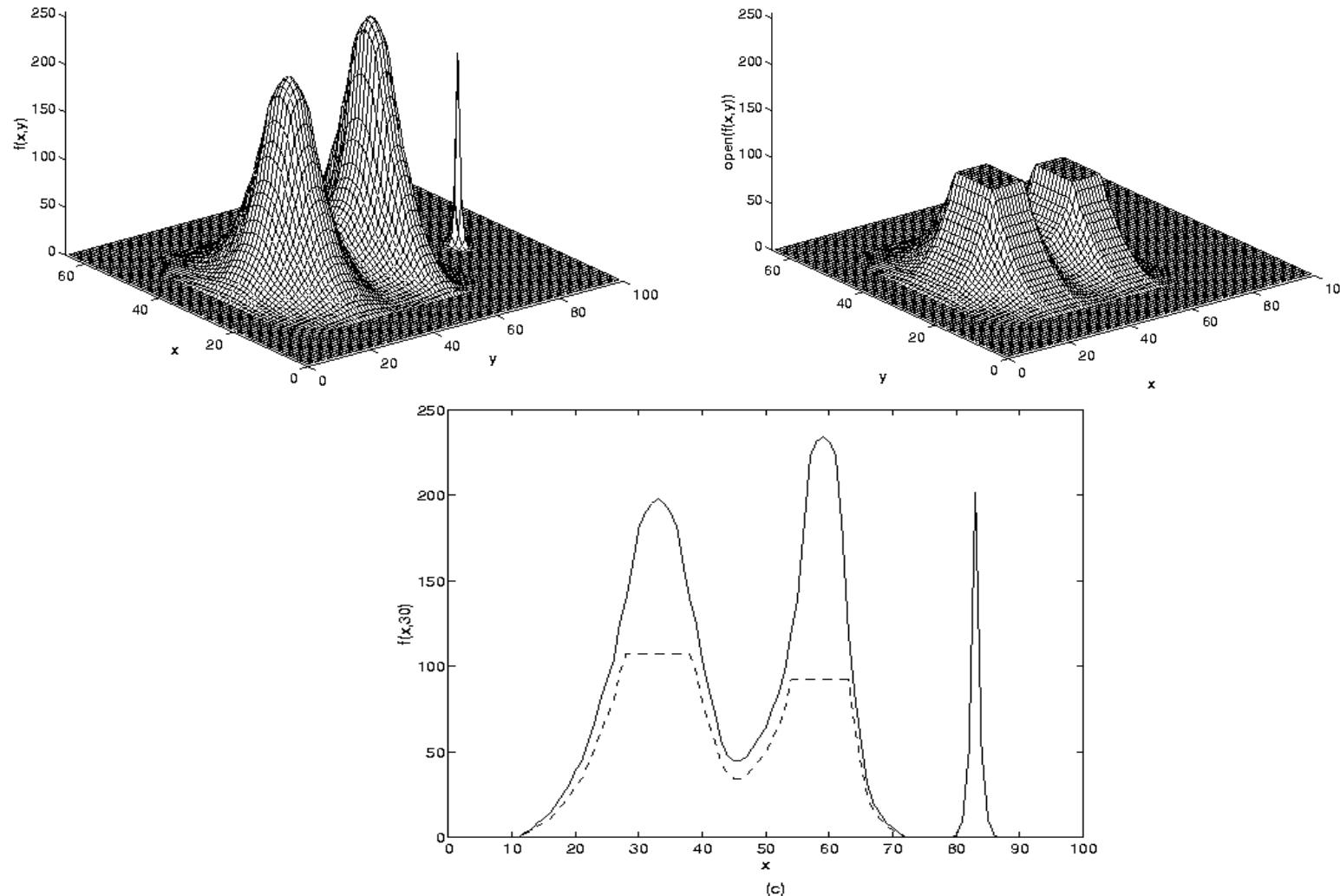
$$(f \circ k)(x) = (f \ominus k) \oplus k$$

$$(f \bullet k)(x) = (f \oplus k) \ominus k$$

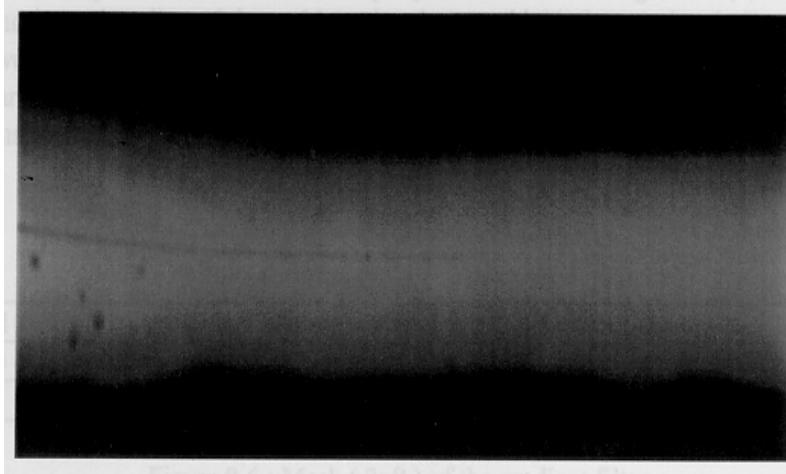
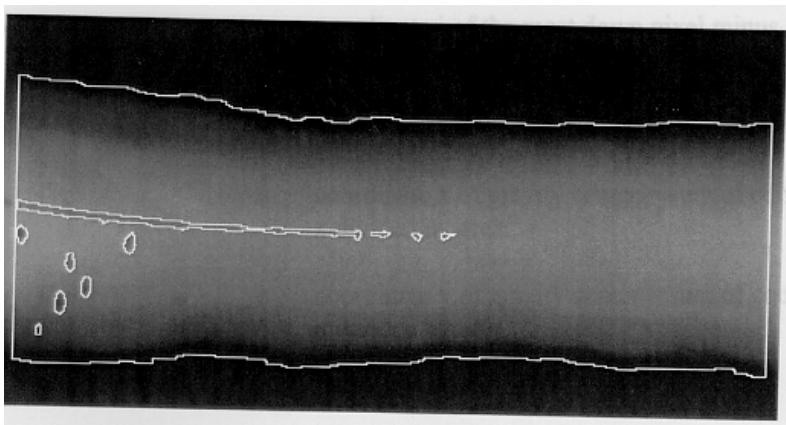
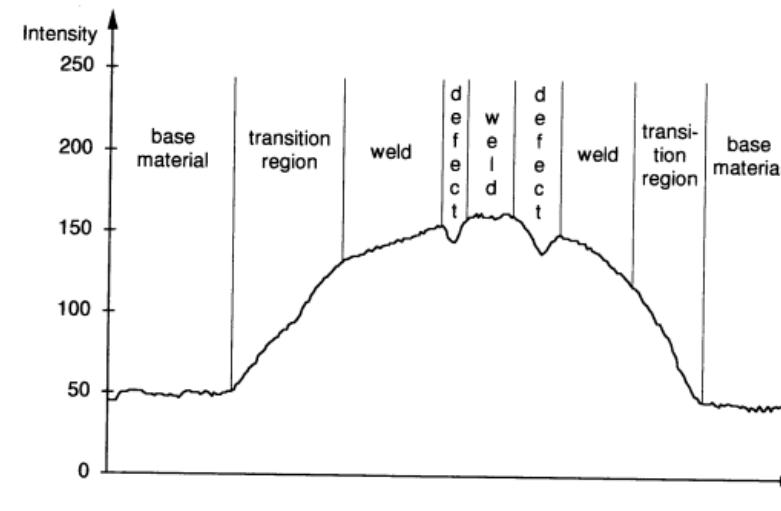
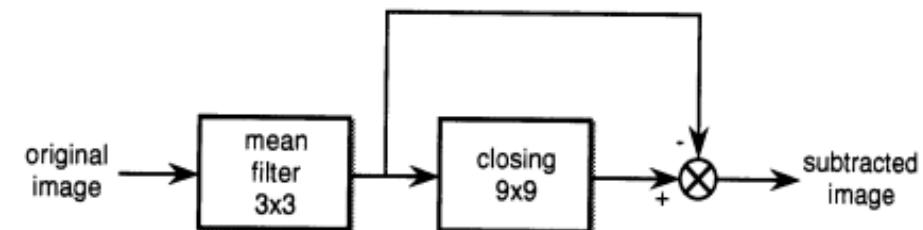
- Properties: cfr binary morphology







- Defect detection in welding



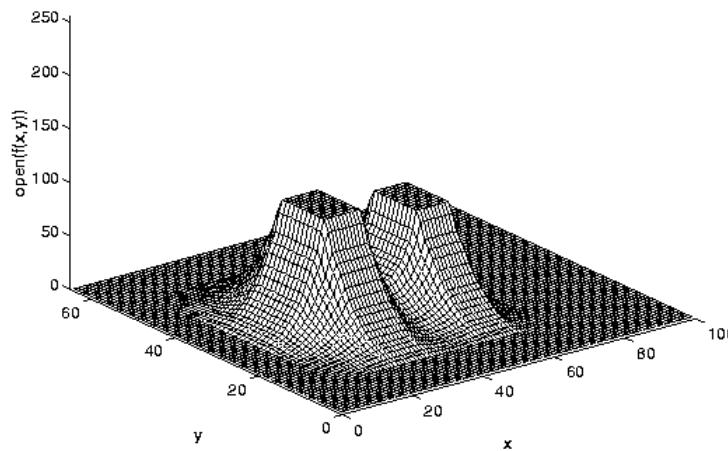
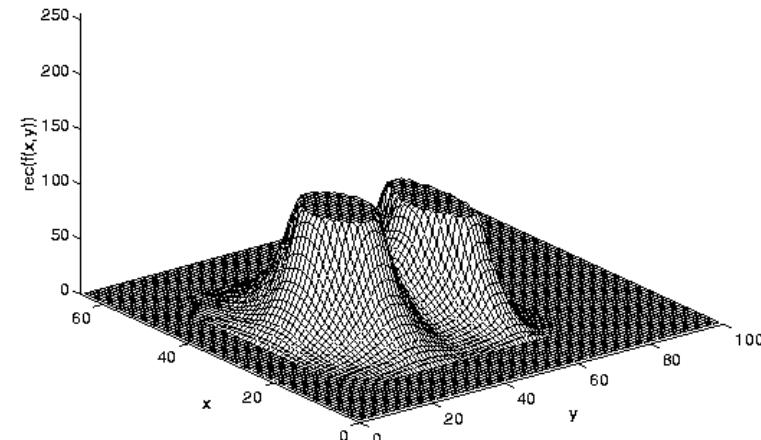
- Geodesic dilation:

$$(X \oplus B)^{(1)} = (X \oplus B) \cap Y$$

$$(X \oplus B)^{(n)} = \underbrace{(((X \oplus B)^{(1)} \oplus B)^{(1)} \dots)^{(1)}}_{n \text{ fois}}$$

- Reconstruction :

$$R_Y = (X \oplus B)^{(i)}, \text{ avec } (X \oplus B)^{(i-1)} = (X \oplus B)^{(i)}$$



- Morphological segmentation: cancer cell detection and analysis

